‘SOAS: Developing Multi-Mission Architecture for

Astronomical Observatory Scheduling

Joe Chavez
California Institute of Technology
1200 E. California Bivd, M/S 100-22
M/S 100-22
626-397-7166

jchavez@ipac.caltech.edu

ABSTRACT

The Space Infrared Telescope Facility (SIRTF) is the fourth and
final element in NASA's family of "Great Observatories" and is
set for a July 2002 launch. SIRTF will provide infrared imaging
and spectroscopy in the 3 to 180-micron wavelength range. The
Science Operations Application Server (SOAS) supports the
SIRTF Planning Observations Tool (SPOT) and Science
Operations System (SOS). The SOAS will provide Internet
enabled web services that include proposal submission,
astronomical catalogs, automated software update, object
persistence, and instrument simulation{1].

Categories and Subject Descriptors
e Components and frameworks,

e Object databases and persistence,

s Patterns and software architecture,

e Javatools, compilers and technologies,

e UML tools, technologies, and methodologies,
o XML tools, iechnologies, and methodologies,

e Objects and the web,

General Terms
Performance, Design, Economics, Reliability, Security.

Keywords .
Java, XML, Objects and the Web, UML, Web Services.

1. INTRODUCTION

The Science Operations Application Server (SOAS) supports the
proposal creation, editing and submission activities the SIRTF
Science Operations System. The architecture is an n-tier, high-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Conference '00, Month -2, 2000, City, State.

Copyright 2000 ACM 1-58113-000-0/00/0000...$5.00.

availability, scalable, transactional, service based design. The
design and analysis of the software architecture is based on
Objected Oriented Analysis and Design techniques and is
expressed in the Unified Modeling Language (UML). The system
is implemented using the Java Development Kit (JDK) and
utilizes features from the Java 2 Enterprise Edition (J2EE). The
SOAS software architecture is comprised of web services,
Enterprise Java Beans (EJB), security and system monitoring
components.

2. ARCHITECTURE

The SOAS is based on an n-tier architecture design[2] with client
(SPOT), application server (SOAS), and data (DBMS) tiers,
shown in UML Deployment Diagram in Figure 1[5]. The SOAS is
comprised of the WebLogic Application Server, Java 2 Enterprise
Edition SDK and the Solaris operating system. All software runs
on Sun hardware. The communications protocol between client
and server is HTTP/HTTPS. Use of this protocol allows any Java
or browser client with Internet access to communicate with the

'SOAS. Back end services (Data and Visibility) may select the

most appropriate protocol suitable for integration with the SOAS.

Applying OOA&D techniques on the high-level architecture
reveals the set of SOAS components shown in Figure 1[4]. The
logical components are grouped into physical tiers:

¢ Client Tier
e Application Server Tier
e Database Tier
e Computing Engine Tier
The Client Tier is composed of:
e SPOT - SIRTF Planning and Observation Tool
e [Manager Interface
e Security Manager Proxy
e Program Manager Proxy
e SOAS Services
The Application Server Tier is composed of:
e Security Manager Service
e Security EJB

e Program Manager Service

“edaaorters
000

(L *<obiectreistonats-
-

“<apphtaton servers >

<riy=s
Program €.

<<oblectreisbona-s
Rngem
o 4 <o0jeckrelagonas >
—]
-

<cente
- Request£9

<ecomouing engine>>

Misibiry Servec

|

<ecOmpUINg enginess

~Egtimation Server
by

Figure 1 - SOAS Component/Deployment UML Diagram

e Program EJB
e Program Value Object
¢ Visibility Service
e Estimation Service
The Database Tier is composed of:
e Security Persistence
e Program Persistence
The Computing Engine Tier is composed of:
e Visibility Server

e Estimation Server

3. Frameworks
The Security Manager and Program Manager services are based
on design frameworks that can be reused on subsequent missions.

3.1 Persistence Framework

The Program Manager is built upon the Persistent Framework,
which is primarily based on existing design patterns from the
GoF[6] and Java 2 Enterprise Edition[3]. The framework defines
the interfaces for Java object persistence from a remote client. The
framework consists of a set Java interfaces for which classes are
implemented to realize the interfaces. The framework provides
both the remote client and server implementation for the services
provided. The remote client implementation encapsulates all the
protocol handling, data marshalling and security specifics. The
server implementation encapsulates the persistence logic and
handles persistence services such as creating, reading, updating
and deleting object in the data store.

3.2 Security Framework

The Security Manager is built upon the Security Framework,
which is based on existing design patterns (referenced in 3.1
Persistence Framework). The Security Framework encapsulates
the authentication and authorization of remote users of the system.

4. REFERENCES

[1] Chavez, J. 2000, Multi-tier Internet Architecture with Java,
UML and OOA & D in ASP Conf. Ser., Vol. 216,
Astronomical Data Analysis Software and Systems IX, eds.
N. Manset, C. Veillet, D. Crabtree (San Francisco: ASP), 75

Heinrichsen, L., Chavez, J., Hartley, B., Mei, Y., Potts, S.,
Roby, T., Turek, G., Valjavec, E., & Wu, X. 2000, The
Scientific Uplink and User Support System for SIRTF in
ASP Conf. Ser., Vol. 216, Astronomical Data Analysis
Software and Systems IX, eds. N. Manset, C. Veillet, D.
Crabtree (San Francisco: ASP), 319

Alur, D, Crupi, J., Malks, D., Core J2EE Patterns, Java 2
Platform, Enterprise Edition Series. Sun Microsystems Press,
Upper Saddle River NJ, 2001

Booch, G., Jacobson, [., Rumbaug, J., The Unified Software
Development Process. Addison-Wesley, Reading MA, 1998

Booch, G., Rumbaug, J., Jacobson, L., The Unified Modeling
Language User Guide, Addison-Wesley, Reading MA, 1998

(2]

(3]

(4]
(3]

Gamma, E. et. al. Design Patterns, Addison-Wesley, Reading
MA, 1995

(6]

